Neuronal fiber pathway abnormalities in autism: an initial MRI diffusion tensor tracking study of hippocampo-fusiform and amygdalo-fusiform pathways.

نویسندگان

  • Thomas E Conturo
  • Diane L Williams
  • Charles D Smith
  • Eren Gultepe
  • Erbil Akbudak
  • Nancy J Minshew
چکیده

MRI diffusion-tensor tracking (DTT) was performed in 17 high-functioning adolescents/adults with autism and 17 pairwise-matched controls. White matter pathways involved in face processing were examined due to the relevance of face perception to the social symptoms of autism, and due to known behavioral and functional imaging findings in autism. The hippocampo-fusiform (HF) and amygdalo-fusiform (AF) pathways had normal size and shape but abnormal microstructure in the autism group. The right HF had reduced across-fiber diffusivity (D-min) compared with controls, opposite to the whole-brain effect of increased D-min. In contrast, left HF, right AF, and left AF had increased D-min and increased along-fiber diffusivity (D-max), more consistent with the whole-brain effect. There was a general loss of lateralization compared with controls. The right HF D-min was markedly low in the autism subgroup with lower Benton face recognition scores, compared with the lower-Benton control subgroup, and compared with the higher-Benton autism subgroup. Similar behavioral relationships were found for performance IQ. Such results suggest an early functionally-significant pathological process in right HF consistent with small-diameter axons (with correspondingly slower neural transmission) and/or higher packing density. In left AF and HF, changes were interpreted as secondary, possibly reflecting axonal loss and/or decreased myelination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

White Matter Integrity, Facial Emotion Perception, and Socialization in Autism Spectrum Disorders

Difficulty interpreting facial expressions is an important component of social deficits seen in Autism Spectrum Disorders (ASDs). The amygdalo-fusiform white matter tract is theorized to contribute to facial expression interpretation. The current study examined relationships between white matter integrity (WMI) along the aymgdalo-fusiform pathway, facial emotion perception (FEP), and socializat...

متن کامل

Fiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation

Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres.  In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...

متن کامل

Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2

Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MR...

متن کامل

Preliminary evidence of abnormal white matter related to the fusiform gyrus in Williams syndrome: a diffusion tensor imaging tractography study.

Williams syndrome (WS) is a genetic condition caused by a hemizygous microdeletion on chromosome 7q11.23. WS is characterized by a distinctive social phenotype composed of increased drive toward social engagement and attention toward faces. In addition, individuals with WS exhibit abnormal structure and function of brain regions important for the processing of faces such as the fusiform gyrus. ...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the International Neuropsychological Society : JINS

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2008